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ABSTRACT:

Besides the development of automatic algorithms for the registration of terrestrial laser scans, the derivation and supply of quality
information is of increasing interest when collecting scan data. Quality information in terms of variances of scanned data is appropriate
for multiple use as it indicates the quality of the scan result. Moreover, it is a prerequisite to use scans for many engineering tasks such
as deformation analysis, etc.
From the point of view of stochastic modelling, the uncertainty measures of scanned points are not homogeneous. Their values depend
on the properties of the scanner itself, on referencing, on the scanning geometry and on additional environmental portions (e. g.
atmospheric conditions). All these observations influence the uncertainty of a scanned point. Therefore, variance propagation becomes
very expensive, as it takes place in a very high dimensional observation space. This paper presents three alternative approaches to
propagate variance information. Two versions of the unscented transformation are discussed and in addition an incremental approach is
developed to reduce computational efforts. All approaches were applied to a scan of a mobile-mapping system considering uncertainties
of scanning and georeferencing. The transformations consist of extensive and highly nonlinear functions. The investigations reveal
the potential of the approaches regarding computational efforts and numerical results. Finally, the benefits of variance information are
discussed regarding acquisition and interpretation of laser scans.

1 INTRODUCTION

The increasing data acquisition rate and the more precise mea-
surements of current laser scanner systems allow to use this tech-
nology for many applications. As a first result, a scan is repre-
sented by the coordinates of the scanned points. This leads to a
three-dimensional documentation of a scene. Moreover, the point
clouds can be used to estimate parameters of a model, etc. Con-
cerning the kinematic case when monitoring an object, a scan can
be used to analyse processes like deformations. The quality of all
derived information is based on the quality of the scan. To de-
scribe the geometrical characteristics, additional information has
to be considered to achieve a meaningful statement concerning
uncertainty.

The stochastic properties of the observations of a scan are influ-
enced by the specifications of the used laser scanner, the referenc-
ing of the scanned points and the geometry and structure of the
particular environment. The stochastic model of the observations
is only valid for a single scanned point. Normally, the law of
variance propagation is used to calculate the variance-covariance
matrix (vcm) of the parameters. Due to the high acquisition rate,
computing the resulting vcm is very expensive. This paper dis-
cusses some alternatives how to compute variance information
for mass data like terrestrial laser scans. Hence, the variance in-
formation of laser scans is a basis to quantify the uncertainty of
points and derived information.

Regarding the specifications of a laser scanner, many investiga-
tions have been done for calibrating and detecting systematic ef-
fects, e. g. (Schulz, 2007, Reshetyuk, 2009). They quantify the
uncertainties for the observed elements in a special environment.
So, different sensors become comparable. In addition, the uncer-
tainties can be used to set up the vcm of the observations for the
polar elements. Besides internal geometrical characteristics de-
scribing the polar elements of a scanner system, physical and en-

vironmental effects have impact on the vcm. (Lichti et al., 2005)
emphasize the meaning of the beam width for the angular uncer-
tainty in horizontal and vertical directions and involve it in the
variance budget of the observations. Similar to photogrammetric
methods, some studies determine systematic effects on-the-job
(Dorninger et al., 2008). Basically, such correction parameters
can be seen as observations and they can also be integrated into
the vcm.

Laser scans can be referenced directly or indirectly. (Pfeifer and
Briese, 2007) give an overview of the current state of art. In the
indirect case, identical (artificial) points are introduced supplying
the transformation parameters to an upper system. Scans from
more than two stations can be referenced via bundle adjustment.
Transformation parameters and the respective uncertainties are
results of the adjustment and they can be considered for the vari-
ance propagation. Conversely, if a level of tolerable uncertainty
for the scanned points is given previously, simulated scan stations
can be used to calculate the propagated variances. So variance
propagations is a condition to find an optimal configuration for
the scan process and it provides the potential to reduce costs.

Direct (geo-)referencing uses additional sensors to provide the
transformation parameters automatically (Vennegeerts et al., 2009).
Integration of the scanner into a multi-sensor system requires the
synchronisation of all involved sensors. This synchronisation can
also be regarded as uncertain. In this case it has to be consid-
ered in the stochastic model. The uncertainty of the solutions of
referencing sensors is not constant. This is especially true, when
GNSS is included. The solutions are primarily dependent on the
current constellation of available satellites. In the kinematic case
states are typically filtered concerning the vcm of the solutions
of the referencing sensors. Especially for moving platforms on a
vehicle (e.g. mobile-mapping systems) these solutions are qual-
itatively very different when the time-dependent GNSS signal is
shadowed. This has to be distinguished from airborne laser scan-
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ning (ALS), where referencing is based on continuously available
GNSS positions.

Overall, uncertainties are quantified for the scanner system, for
referencing and for the scanned environment. Integrating such
influences also increases the dimension of observations and the
functional terms become more lengthy. The aim of this paper is
to compare algorithms and numerical results for different alterna-
tives of variance propagation, considering variances and covari-
ances of an high-dimensional observation space. Quantifying the
vcm of a scanned point is done here one-way, but the transforma-
tion of uncertainties is a basis especially if more influences like
scanning geometry, surface roughness, etc. are involved.

The paper is organised as follows: Section 2 introduces the math-
ematical model for the basic geometrical transformation of the
scanned points. In section 3 three variants of variance propaga-
tion for mass data are presented. These approaches were applied
to a mobile-mapping system (Section 4). Section 5 draws the
conclusions and ends with an outlook for further studies.

2 MATHEMATICAL MODEL

To transform the scanned coordinates to an external coordinate
system we start with a common approach existing of least n ob-
servations

l = [(x, y, z)pΨΘΦ (d, α, θ)s]T . (1)

Converting the local polar coordinates of a scan system (d, α, θ)s

to a cartesian coordinate system leads to

xs =

 d · sin θ sinα
d · sin θ cosα
−d cos θ

 . (2)

The Euler angles Ψ,Θ,Φ and the position (x, y, z)p enable a
transformation to an external system xe

xe = Re
s · xs + xp. (3)

where

Re
s rotation matrix from scanner system to reference system,

e. g. via Euler angle Ψ,Θ,Φ (DIN 9300)

xp = (x, y, z)p = position of a platform (static/mobile) in carte-
sian coordinates.

The strategies to acquire a terrestrial laser scan vary by the as-
sumptions made. For a static scan, e.g., one supposes that the
referencing elements Re

s and xp are constant during the scan pro-
cess. In contrast, reference parameters are variable for all scanned
points, if a moving platform is used.

For all observations we introduce a vcm Σll, providing variances
and covariances. For the scanner itself the manufactures’ instruc-
tions and additional investigations provide the variances of the
scan parameters. Regarding the case of static scans, the vcm is
a result of the (bundle) adjustment. For a moving platform, the
vcm of the state and referencing parameters, respectively, can be
estimated with a KALMAN filter.

3 ALTERNATIVES OF VARIANCE PROPAGATION

A common approach to obtain variances for parameters is the
law of variance propagation which uses the first derivative of a
function (e.g. (Koch, 1999). According to our model (Sec. 2),
the Jacobian

J
3,n

=
∂xe

∂l
(4)

expresses the linear relation between the referenced coordinates
xe and the observations evaluated at l. The corresponding co-
variance matrix is

Σxexe = J · Σll · JT . (5)

However, computing the Jacobian is very expensive in case of a
high-dimensional observation vector as for mobile-mapping sys-
tems. Using a series of rotation matrices, an algebraic differen-
tiation of the n × 3 elements of the Jacobian leads to extensive
terms. So functional relations are often simplified or the Jacobian
is partitioned for a group of observations, where correlations are
not considered at all. Rapid numerical solutions of derivatives are
delivered by the automatic differentiation (Griewank and Walther,
2008), recently named algorithmic differentiation.

The method is based on elementary operation rules for orded
pairs consisting of a value and the derivative. Any vector func-
tion can be decomposed into a sequence of this rules which leads
to an excat solution for the derivatives at a particular argument.
The solutions are within the computational accuracy. The algo-
rithmic differentiation can be used to calculate the Jacobian and
derivatives of higher order.

In the following we present three variants to propagate variance
information for mass data: (1) the (classical) unscented transfor-
mation (UT), (2) the modified unscented transformation and (3)
the incremental variance propagation.

3.1 Unscented transformation (classical)

Uncertainty can be expressed through the vcm of the observa-
tions. Regarding the GUM (Guide to the Expression of Uncer-
tainties)(GUM, 1995), the probability density function specifies
the uncertainty. GUM refers to the uniform, triangular or trape-
zoidal or the normal distribution function depending on addi-
tional information about the input quantities. To compute a com-
bined uncertainty of a number of input quantities, Monte Carlo
methods provide a solution via a deterministic approximation of
any density function and an arbitrary function (Koch, 2008). The
disadvantage is the high computational cost due to the randomly
generated density function.

Under the assumption of a symmetrical density function, (Julier
and Uhlmann, 1997) introduced so-called sigma points for ap-
proximation. The fundamental idea is to approximate the dis-
tribution function instead of the (nonlinear) function. This is the
difference to the law of variance propagation (Eq. 5), where func-
tions are linearised. Instead of a randomly generated distribution
function as applied in Monte Carlo methods, the UT uses a deter-
ministic algorithm and only 2n + 1 sigma points to represent a
n-dimensional multivariate distribution function of the observa-
tions

L(0) = l

L(i) = l + a(i)

L(i+n) = l− a(i)

(6)

where i = 1...n. Here the sigma points are denoted with L to
emphasize the relation to the observation vector l. The vector
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a(i) is the i-row of the matrix A, defined using the matrix square
root of (n + κ)Σll. It can be computed with the Cholesky de-
composition

A ·AT = (n+ κ)Σll. (7)

κ ∈ < scales higher orders terms for a better approximation of
the distribution. (Julier and Uhlmann, 1997) suggest κ = n− 3,
when l is Gaussian. Furthermore, weight factors are introduced
to emphasize the loading of the observation l

w(0) = κ/(n+ κ)

w(i) = 1/2(n+ κ)

w(i+n) = 1/2(n+ κ)

. (8)

Each sigma point L has to be transformed to a point X in the
cartesian system according to the function

X = f(L). (9)

The mean of the weighted average of all transformed sigma points

x =
2n∑
i=0

w(i)X (i) (10)

represents an unbiased estimation of x with the corresponding
covariance matrix

Σxx =
2n∑
i=0

w(i)(X (i) − x)(X (i) − x)T . (11)

As mentioned before, 2n+1 sigma points have to be transformed
and the vcm can be estimated without evaluating the Jacobians.
Further studies aim to reduce the number of sigma points (Julier,
2003). A recent one (Li et al., 2007) provides a solution with less
computational effort. It is discussed in Section 3.2.

3.2 Modified unscented transformation

The progress to develop modifications of the UT is driven by
KALMAN filtering for nonlinear systems. To process positions
real-time for sensors with a high acquisition rate, many investi-
gations have been done to minimise computational effort. The al-
gorithms used for the variance propagation of the predicted state
are general and can be applied to any kind of (nonlinear) trans-
formation.

(Li et al., 2007) present a set of sigma points, which is unbiased
for mean and variance and consists of only n + 1 points. The
matrix

D
n,n+1

=
√
n+ 1


1√

j(j+1)
. . . 1√

j(j+1)︸ ︷︷ ︸
j=2...n

− 1√
(j + 1) /j

0 . . . 0︸ ︷︷ ︸
n−j


(12)

(here one of n rows is shown) scales the distances to the observa-
tions l.

Like in Section 3.1, the vcm is considered applying A (see Eq.
7). In matrix representation this leads to the sigma points

L
n+1,n

= 1T ⊗ l + A·D (13)

where ⊗ denotes the Kronecker product. The elements of the
vector 1 = [1...1]T are equal to 1. The weight factors w are
introduced with identical values

w = [w(i) w(i)... w(i)]T withw(i) =
1

n+ 1
∀ i = 1...n+ 1

(14)

and
Λ = diag(w(i)) =

1

n+ 1
In+1. (15)

After transforming each sigma point

X (j) = f(L(j)) (16)

(L(j) is the j-th row vector of L for j = 1...n+ 1) the weighted
mean and the covariance matrix are given by

x̄
n,1

= X
n,n+1

· w
n+1,1

(17)

and
Σxx =

(
X − 1T ⊗ x

)
Λ
(
X − 1T ⊗ x

)T

(18)

(in analogy to Eqs. 10, 11). The two variants of the UT in Section
3.1 and 3.2 propagate variances with an deterministic approxima-
tion of the density function. The law of variance propagation (Eq.
5) is using the Jacobian as linearised representation of a function.
In case of a highly nonlinear function, computing the Jacobian is
expensive. The approach in the following Section 3.3 reduces the
computational costs.

3.3 Incremental variance propagation

As a third variant to compute variance information we introduce
an incremental one, which is based on the law of variance prop-
agation (Eq. 5) and on extrapolation. Usually the Jacobian J is
calculated for each observation l, even if transformations of adja-
cent observations captured by high-resolution sensors are similar.
Instead of computing a Jacobian for each observation we evaluate
J in a series expansion. As known from Taylor series, a scalar
function of one scalar variable x = f(l) can be evaluated at the
point l(i) with

x ≈ f(l(i)) +
∂f

∂l
|l(i) · (l − l(i)) + ... , (19)

which is a linear approximation of f(l) near l(i). For an observa-
tion vector l in the neighbourhood of l(i) and a vector of functions
f the Jacobian

J :=
∂f

∂l
|l (20)

at l can be evaluated in a series, too:

J(l) ≈ J (i) +
∂2f

∂l2
|l(i) · (l− l(i)) + .... (21)

where the second derivative of f is the Hessian

H :=
∂2f

∂l2
|l(i) . (22)

In case of a vector function f , consisting of u functions for n
observations of l, the Hessian is a three dimensional matrix

dim(H) = u× n× n (23)

and the approximated Jacobian at l , evaluated at l(i) is

J
u,n

( l
n,1

) = J
u,n

(l(i)
n,1

) + H
u,n,n

(l(i)
n,1

). ∗ ( l
n,1
− l(i)

n,1
) (24)

where the operator .∗ denotes a “layer-wise” product of the sub-
matrices H

j,n,n
for all j = 1...u. This Jacobian can be used to

propagate the variance regarding Eq. 5.

Note, although terms of higher order are involved, the incremen-
tal approach is different from the nonlinear variance propagation
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Figure 1: Scanned points in a profile divided in 12 circle seg-
ments. At the first point l(i) of a segment relative to the scan
direction the Jacobian J and the Hessian H is computed. The
Jacobians of the following scanned points (observations l) are
approximated according to Eq. 24.

(Grafarend and Schaffrin, 1993), where the Hessian is introduced
for a better approximation of a function. The incremental vari-
ance propagation is a linear propagation with a Jacobian approx-
imated for adjacent observations.

The answer to the question where to set the point l(i) depends
on computational effort and precision caused by linearization. In
case of sensors acquiring data sequentially, spatial and temporal
vicinity should be given. For terrestrial laser scanning we applied
a solution referring to the deflection unit. For a scanned profile
the points l(i) can be set for k equal circle segments. In Fig. 1 k =
12 segments are introduced. The figure shows points scanned in
a profile of a mobile-mapping system. According to the rotation
direction of the deflection unit, for the first point in a segment
the Jacobian and the Hessian are calculated. The Jacobians for
the next points in the segment are evaluated according to Eq. 24.
The concept ensures a spatial neighborhood between l(i) and l,
which is necessary due to the linearization.

4 APPLICATION EXAMPLE: MOBILE-MAPPING
SYSTEM

Because of the permanent movement, in mobile-mapping sys-
tems each scanned point has to be referenced on its own. This
has be taken into account, when setting up the vcm of the obser-
vations. Furthermore, referencing via an integration of naviga-
tion units (IMU, GNSS, etc.) needs several rotations to transform
a scanned point to an earth-fixed geodetic system. Considering
rotation and translation parameters as observations leads to an
observation vector

l = [(xyz)b (φλ)b (ΨΘΦ) (∆xyz)s2b (rxyz)s2b (rz)s2s (d, θ)s]T

(25)
where

(xyz)b cartesian position of the body system
(ECEF, earth-centered-earth-fixed)

(φλ)b longitude, latitude of the body system
(ΨΘΦ) euler angle (DIN 9300)
(∆xyz)s2b translation vector scan-system to body-

system (leverarm)
(rxyz)s2b rotation angles from scan-system to

body-system (boresight)
(rz)s2s rotation angle around the z-axis (when

using a terrestrial 3d-scanner)
(d, θ)s polar coordinates of scanned point.

In addition to Eq. 3 a series of transformations is necessary to
transfer scanned points (d, θ)s to an earth-fixed system xe. Im-
plemented transformations and filters are described in detail in,

e.g., (Vennegeerts et al., 2008). They are briefly repeated here to
keep the paper self-contained.

xe = Rn2eRb2n(Rs2bRs2s(d, θ)s + ∆xs2b) + xb (26)

where is

Rn2e rotation matrix: navigation- to earth-
centered-earth-fixed-system (ECEF)

Rb2n rotation matrix: body- to navigation-
system

Rs2b rotation matrix: scanner- to body-
system

Rs2s rotation matrix: about the z-axis of
scanner (in case of using a terrestrial
3d-scanner)

∆xs2b translation vector: scanner- to body-
system

xb position body (navigation unit) in
earth-centered-earth-fixed-system.

The calibration parameters of the system (∆xyz)s2b and (rxyz)s2b

are determined by photogrammetrically determined transforma-
tion points. Tab. 1 shows the components of the vcm for the
calibration of the system including a mounted laser scanner (Z+F
Imager 5003). Distance-related values are specified for a typical
range around 10 m. The components of the vcm quantified in
Tab 1 include no correlations.

Parameter σ
System Translation (∆xyz)s2b 5 mm
(scanner to body
system)

Rotation (rxyz)s2b 0.01 deg

Z+F Imager 5003 Range d 1 mm + 30 ppm
Vertical angle θ 0.01 deg

Table 1: Uncertainties for the vcm of the observations

Uncertainties of the referencing parameters - variances and co-
variances - were taken from the KALMAN filtered states. We
applied all three alternatives to propagate variance information of
scanned points in the referenced system, consisting of the vcm
Σxxe. Derivatives needed for the incremental (Sec. 3.3) and
standard (Eq. 5) approach were calculated by algorithmic differ-
entiation (Griewank and Walther, 2008).

To compare the computational time, Fig. 2 shows how many points
were propagated in one minute. The results were obtained on a
Desktop PC (Core 2 Quad at 2.4 GHz, 3 GB RAM, 32-bit). Note,
computation time includes variances of all parameters and vari-
ances and covariances of the referencing parameters (Eq. 25).

Figure 2: Number of vcms of scanned points propagated in one
minute

Therefore, using the modified unscented transformation leads to
an improvement in computation time of 68% compared to the
classical one. This can be expected approximately, because the
modified variants needs n+ 1 sigma points versus 2n+ 1 points
of the classical version. The fastest way to propagate variances
for this application is the incremental approach. The computation
time is comparable to the modified unscented transformation and
about 85% faster than the classical unscented transformation.
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Figure 3: Stochastic point cloud with points colored related to the
mean coordinate uncertainty σ̄ (Eq. 27)

To compare the propagated vcms we calculated a mean coordi-
nate uncertainty

σ̄ =

√
trace (Σxxe)

3
(27)

for each referenced point. The results of a test drive can be seen
in Fig. 3, where points are colored regarding the mean coordinate
uncertainty.

The distribution of the uncertainties seems to be quite homoge-
neous, revealing the high quality of the used IMU: the mean coor-
dinate uncertainty is fairly independent from the scanning range
pointing to the low uncertainty of the orientation angles. Obvi-
ously, the uncertainty is dominated by the solutions for the kine-
matic GNSS positions. This part has to be investigated in future
studies.

In the following the numerical results of the modified unscented
transformation and the incremental approach are compared to the
classical unscented transformation. Due to the number of sigma
points, the classical unscented transformation can preferably be
seen as a kind of reference. A histogram of the differences be-
tween the uncertainties (Eq. 27) of the two unscented transfor-
mations is shown in Fig. 4.

Figure 4: Differences of σ̄ UT (classical) - UT(modified)

All differences are negative, so that the uncertainties from the
modified approach are always greater. For a very few points ab-
solute values are greater than 5 mm, which might be caused by
functional discontinuities. The quality of transformation of a dis-
tribution and thus the variance propagation depends on how the
sigma points represent the distributions. Less sigma points ap-
proximate a distribution less precisely. So minimizing the num-
ber of sigma points can become crucial for highly nonlinear trans-
formations. Overall, the differences lie within a range of 1-2 mm,
which is acceptable for many applications.

Figure 5: Differences of σ̄ UT (classical) - Incremental variance
propagation

Comparing the results of the incremental approach with the clas-
sical unscented transformation leads to Fig. 5. The differences
are distributed around zero, while the absolute values are negligi-
ble. Regarding the present application, the incremental approach
delivers acceptable results spending a fraction of time compared
to the standard variance propagation, calculating a Jacobian for
each point (Fig. 2). Only 15% of computation time is necessary
to compute a Jacobian for one point.

Certainly, in case of the incremental approach, the effort depends
on the linearization strategy - here on the number of segments.
Generally, in a polar measuring system the uncertainty transverse
to the observation direction arises with the distance. Higher or-
der terms like the Hessian show how changes of the observations
effect the Jacobian (c.f. Eq. 24). The linearization succeeds as
better as smaller the changes of the distances in the segment of
a scene in relation to the entire distance are. The higher the res-
olution of a sensor the more reduces the incremental approach
computation effort in relation to a pointwise calculation of the
Jacobian.

5 CONCLUSIONS AND OUTLOOK

Variance information of scanned points provides an opportunity
to improve processes of collecting and analysing scan data. (Schaer
et al., 2007) present some options for airborne laser scanning.
In the terrestrial case, this information is useful to increase effi-
ciency of registration and referencing. Regarding scanning from
a static platform, the number and locations of the scan stations are
often chosen on the condition to scan an object completely with
a minimum number of scan stations. In other applications, espe-
cially for engineering tasks, the condition is to scan an object with
a given maximum tolerable uncertainty and a minimum num-
ber of stations. Today, the decisions are made generally based
on practical knowledge. If the configuration of the scan station
is simulated previously, propagating variances offers options to
optimise the scan process. Regarding the registration and ad-
justment of a set of single scans, the observations are usually
weighted equally. A sophisticated loading based on variance in-
formation can lead to more precise results.

As mentioned before, in case of direct (geo-)referencing using
the GNSS, the quality of the positions varies. This has impact
on the geometric uncertainty of the scanned points. Especially
in areas which are shadowed from the GNSS signals variance in-
formation quantifies the resulting geometric scan quality. This
is particularly meaningful for design purposes if, e.g., high-end
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IMUs are substituted for low-cost micro-electromechanical sys-
tems (MEMS).

Finally, variance information does not only indicate the quality
of a scan process. It is an important component for the process of
interpretation and analysing. In case of determining parameters
of a model and relating stochastics, reliable input quantities are
needed to get meaningful estimated parameters.

The short scanning time of current laser scanners is ideally suited
to scan objects multi-temporally. These data are often acquired
from variable positions and different scanners. To compare the
states, the distinct conditions have to be taken into account, if
changes are to be evaluated stochastically. The additional in-
formation enhances the flexibility to process multi-temporal and
multi-scaled laser scans.

Future work aims to develop and investigate approaches of the
unscented transformation and modifications of the incremental
propagation to minimise the number of points where to calculate
the Jacobian and Hessian. Besides the influences of scanner and
referencing, further studies should include the scanning geome-
try. Therefore, an integrated mathematical model has to be set up
including geometric parameters such as the angle of incident, etc.

To consider more influences, the observation space has to be en-
larged. Thus, efficient variance propagation is necessary to re-
duce the increasing demands on computation - and to provide a
basis for a qualitative processing of laser scanning data.
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